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Seroprevalence of antibodies against

Chlamydia trachomatis and enteropathogens

and distance to the nearest water source

among young children in the Amhara Region

of Ethiopia



Author summary

Trachoma, an infection of the eye caused by the bacteria Chlamydia trachomatis, and

many diarrhea-causing infections are associated with access to water for washing hands

and faces. Measuring these different pathogens in a population is challenging and rarely

are multiple infections measured at the same time. Here, we used an integrated approach

to simultaneously measure antibody responses to C. trachomatis, Giardia intestinalis,
Cryptosporidium parvum, Entamoeba histolytica, Salmonella enterica, Campylobacter
jejuni, enterotoxigenic Escherichia coli (ETEC) and Vibrio cholerae among young children

residing in rural Ethiopia. We found that the seroprevalence of all pathogens increased

with age and that seropositivity to more than one pathogen was common. Children living

further from a water source were more likely to be exposed to S. enterica and G. intestina-
lis. Integrated sero-surveillance is a promising avenue to explore the complexities of

multi-pathogen exposure as well as to investigate associations between water, sanitation,

and hygiene related exposures and disease transmission.

Introduction

Diarrhea and trachoma typically afflict the world’s poorest populations and are major contrib-

utors to preventable morbidity [1,2]. Diarrhea, caused by parasitic, viral and bacterial infec-

tions, and trachoma, caused by repeated Chlamydia trachomatis infections of the eye, share



Health Care Administration and Control Authority, and institutional review boards at the

University of California, San Francisco and Emory University. CDC staff did not have contact

with study participants or access to personal identifying information and were therefore







The majority of children, 56.9% (1291/2267), lived in households whose nearest water source

was unprotected. Household demographic information was available for 755 children. In this

subset, 8.7% (66/755) of children lived in households with electricity, 10.1% (76/755) lived in

households with a radio, 0% (0/761) lived in households with a mobile phone, 84.4% (637/755)

lived in households that owned animals. For the majority of households (85.2% (643/755)), the

primary occupation was agricultural work. (Table 1).

The seroprevalence among 0–9 year-olds was 43.1% (95% CI: 38, 48.4) for C. trachomatis,
27.5% (95% CI: 23.6, 31.6) for S. enterica, 70.3% (95% CI:67.7, 72.8) for E. histolytica, 53.9%

(95% CI: 51.8, 56.0) for G. intestinalis, 95.6% (95% CI: 94.4, 96.5) for C. jejuni, 76.3% (95% CI:

74.1, 78.4) for ETEC and 94% (95% CI: 92.8, 94.9) for C. parvum. Seroprevalence increased

with age with marked differences across pathogens. The age-dependent seroprevalence of G.

intestinalis declined after age 2. (Fig 1). For ETEC, E. histolytica, C. parvum, C. jejuni and G.

intestinalis, over 70% of children were positive at age 2 years. The age-dependent seropreva-

lence slopes were less steep for both C. trachomatis and S. enterica; by age 9 over 60% of chil-

dren were seropositive for C. trachomatis and over 40% of children were seropositive for S.
enterica. Seropositivity for more than 1 pathogen was common (Fig 2). At age 2 years, the

median number of pathogens to which a child was seropositive was 4 (IQR 3–5), increasing to

5 (IQR 4–6) by age 4 years.

There was no indication for trend in community-level seroprevalence by community-level

median distance to the nearest water source; however, there was considerable variability on

community-level seroprevalence for some pathogens (C. trachomatis, G. intestinalis, E. histoly-
tica and S. enterica (Fig 3)). The between-community variance in seroprevalence was highest

for C. trachomatis (SD .20) and S. enterica (SD 0.13). More community-level heterogeneity

was apparent among young children (under 3) compared with older children, the exceptions

being C. parvum and C



Fig 1. Age-dependent seroprevalence of trachoma and enteropathogens in the Amhara region of Ethiopia. Age-

dependent seroprevalence curves were fitted using generalized additive models (GAM) with a cubic spline for age.

Seropositivity cutoffs were derived using ROC curves, if available, or by fitting finite mixture models (S1 Fig).

Seropositivity cutoffs could not be estimated for V. cholerae in this study, so seroprevalence curves are not shown. For

pathogens with more than one antigen, positivity to either antigen was considered positive. IgG response measured in

multiplex using median fluorescence units minus background (MFI-bg) on the Luminex platform on 2267 blood

samples from 2267 children
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Children in the quartile living farthest from any water source had a 12% (95% CI: 2.6, 21.4)

higher seroprevalence of S. enterica and a 12.7% (95% CI: 2.9, 22.6) higher seroprevalence of

G. intestinalis compared to children living in the nearest quartile (Table 2). Quantitative anti-

body levels demonstrated the same pattern for S. enterica, with antibody levels for S. enterica
LPS group D 0.32 (95% CI: 0.13, 0.52) log



age 9 years, over 60% of children were seropositive for C. trachomatis and over 40% of children

were seropositive for S. enterica.

Unlike for other pathogens in the study, G. intestinalis seroprevalence declined after age

two years. Giardia has been shown to exhibit increasing infection prevalence with age in other

cohorts in low-resource settings with a high proportion of asymptomatic infections [48], sug-

gesting that the IgG response is weaker at older ages despite infection. The precise immunolog-

ical mechanism for lower mean IgG levels among older ages is not currently known, but the

phenomena has been observed in multiple other cohorts. For example, Arnold et al. demon-

strated declining mean IgG with age for Giardia (VSP-3, VSP-5), ETEC (LTB) and Campylo-

bacter (p18, p39) in cohorts from Haiti and Kenya [13]. Age-dependent antibody kinetics in

that study suggest that much of the decline of mean IgG with age for these pathogens is likely

due to acquired immunity, which results in either lower rates of infection, or more likely, if

children are infected they experience less severe disease and potentially a less robust IgG boost.

Use of a multiplexed immunoassay allowed us to expediently identify that seropositivity to

more than one pathogen was common in the Amhara region of Ethiopia and that, by age

three, most



in studies using microscopy in the region. In one recent study of protozoan prevalence in the

Amhara region, the single-stool prevalence of Entamoeba spp. (histolytica and dispar) by

microscopy among three year old children was 7.1% [49]. However, differences between sero-

prevalence and prevalence by microscopy are expected given that IgG response integrates

information over time and microscopy measures active presence and shedding. The seropreva-

lence of C. trachomatis identified in this study is consistent with the high burden of trachoma

documented in the Amhara region [50].

Children living farther from a water source had higher seroprevalence of S. enterica and G.

intestinalis. The absence of heterogeneity in seroprevalence in this high transmission setting

may have masked other potential relationships between exposure to enteric pathogens and

distance to water. For example, among children 0 to 3 years old, the seroprevalence of C. par-
vum and C. jejuni were both very high (77% and 91% respectively). In a sensitivity analysis

restricted to children younger than 12 months, there was an indication that the quantitative

antibody levels for children living in the farthest quartile of distance compared to the nearest

quartile of distance were higher for V. cholerae toxin beta subunit, C. parvum cp17 and cp23.

However, the differences among this age sub-group were not statistically significant; the statis-

tical power was likely limited by the lower number of children in this subset.

We were likely underpowered to determine differences in seroprevalence adjusted for

socio-economic status. In the random 33% subset of children with available household asset

information, children living in the furthest quartile of distance still had a higher seroprevalence

of S. enterica and G. intestinalis, however the differences were not statistically significant.

There were several limitations of this study with respect to how the nearest water source

was measured. First, we measured absolute Euclidean distance rather than walking distance or

time it takes to collect water. The study site region has tremendous gradation in altitude, with



many high plateaus and steep valleys. In some cases, the distance to the nearest water source

may not reflect the time it would take to ascend, descend or otherwise traverse the terrain.

Future studies may consider alternative methods for calculating distance that accommodate

land type and elevation changes. Second, we did not ask household which water source they

were using. Households may use water sources that are further away via linear distance

because of taste preference, ease of access, water source type or other reasons, namely terrain

[51]. Third, the study site region is arid and there is variation in water availability by season.

We simply measured the distance to the nearest water source at the time of the census and this

may have not reflected a



based on external negative controls (solid) and finite Gaussian mixture models (dash). For

Chlamydia trachomatis pgp3 & CT694 cutoffs were derived using receiver operating charac-

teristic (ROC) curves, for Cryptosporidium parvum Cp17 & Cp23 cutoffs were derived using a

standard curve and for Giardia intestinalis VSP-3 & VSP-5 and Entamoeba histolytica LecA

cutoffs were derived using the mean plus 3 standard deviations above a negative control panel.

(TIFF)

S2 Fig. Community-level correlation in seroprevalence. Correlation between the mean com-

munity seroprevalence depicted with circles, greater circle area represents higher correlation.

For pathogens with more than one antigen, positivity to either antigen was considered positive.

IgG response measured in multiplex using median fluorescence units minus background (MFI-

bg) on the Luminex platform on 2267 blood samples from 2267 children aged 0 to 9 years.
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S1 Table. Quantitative antibody levels by distance quartile and differences comparing

Quartile 4 to Quartile 1.
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